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We consider the problem of wetting on a heterogeneous wall with mesoscopic
defects: i.e., defects of order L e, 0 < e < 1, where L is some typical length-scale
of the system. In this framework, we extend several former rigorous results
which were shown for walls with microscopic defects. (10, 11) Namely, using statis-
tical techniques applied to a suitably defined semi-infinite Ising-model, we derive
a generalization of Young’s law for rough and heterogeneous surfaces, which is
known as the generalized Cassie–Wenzel’s equation. In the homogeneous case,
we also show that for a particular geometry of the wall, the model can exhibit a
surface phase transition between two regimes which are either governed by
Wenzel’s or by Cassie’s law.
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1. INTRODUCTION

Surface phenomena play an important role in many fundamental processes
and, among them, the wetting of surfaces is a subject of primary impor-
tance.

Consider a drop of liquid B in coexistence with a gas phase A on top
of the surface W. The shape of this drop with a fixed volume of liquid is



Fig. 1. Young’s contact angle.

obtained by minimizing the free energies associated to the three interfaces
under consideration. The solution of the corresponding variational
problem is given by the Winterbottom’s construction.

As a consequence, the contact angle of the droplet with the wall satis-
fies in the isotropic case the well known Young’s equation:

yAB cos h=yAW − yBW — Dy (1.1)

where yij, {i, j} ¥ {A, B, W} is the surface tension between the media i
and j. In the case of an orientation dependent surface tension for the AB-
interface, the L.H.S. of the above equations have to be modified: e.g., in
dimension d=2, one should replace it, by cos h yAB − sin h d

dh yAB (see ref. 8).
The validity of Winterbottom’s construction and Young’s equations in

the frame of Statistical Mechanics has been established in several works:
see refs. 8 and 9 for SOS-models and refs. 1 and 24 for Ising-like models.
The substrate W is usually considered as perfectly flat and homogeneous
surface.

When the surface is homogeneous but rough, one usually introduce
the roughness as the ratio of the area A of the surface and the area Ā of its
projection on the horizontal plane: r=A/Ā. In this case the differential
wall tension Dy has to be computed according to the Wenzel’s law: (29)

Dy=r(Dy) flat

where (Dy) flat=y flat
AW − y flat

BW is the differential wall tension of the corre-
sponding flat wall.

When the substrate is flat but made of two species W1 and W2 with
concentrations c1 and c2=1 − c1, respectively, we will have:

Dy=c1(Dy) flat
1 +c2(Dy) flat

2

where (Dy) flat
i =y flat

AWi
− y flat

BWi
. This relation is known as the Cassie’s law. (7)

When the substrate is both rough and heterogeneous the generalized
Cassie–Wenzel’s law states:

Dy=r1c1(Dy) flat
1 +r2c2(Dy) flat

2 (1.2)

where rici is the ratio of the non planar surface covered with material i to
the total planar area.
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This generalized Cassie–Wenzel’s equation has been presented for
macroscopic defects using thermodynamical arguments in ref. 26. In
refs. 10, 11, the rigorous proof of this equation has been derived, within a
SOS-like model, for microscopic defects covering the surface with a certain
periodicity. In the later case the law is satisfied up to a small temperature
dependent correction (tending exponentially to zero with the temperature).
Namely,

Dy=r1c1(Dy) flat
1 +r2c2(Dy) flat

2 +O(e−bC)

Let us now consider a surface z(x, y) over a certain area L × L in
atomic units. Combining the previous results, we know that we can use the
Cassie–Wenzel’s equation for defects of order O(L) or of order O(1). On
the other hand, it is also obvious that a real surface can present heteroge-
neities at all intermediate length-scales L e with 0 < e < 1. It is thus interest-
ing to extend the proof of the Cassie–Wenzel’s relation for such mesoscopic
defects O(L e), 0 < e < 1.

This is actually the aim of this paper. We consider an Ising-like lattice
gas model with mesoscopic defects. We prove in Theorem 1 below, the
validity of the generalized Cassie–Wenzel’s equation at low temperatures,
within a certain range of the coupling constants. This equation reduces to
the Cassie’s law when the wall is heterogeneous and flat and to the
Wenzel’s law when the wall is homogeneous and rough.

Let us stress that contrary to the case of microscopic defects, no
corrective term has to be added.

However, this result is only true when the strength of the interaction
between the particles and the wall is small. We give then an important
improvement of this law, showing that when this strength is varied, the
system exhibits surface phase transitions between two regimes.

Namely, we show in Theorem 2 that, in the homogeneous case,
a transition takes place between a Wenzel’s and Cassie’s behaviours for the
drop.

The paper is organized as follows. In Section 2, we introduce the
modified semi-infinite Ising model which describes the modeling of the
rough and heterogeneous surface, and we give the microscopic definitions
of the various surface-tensions. Our results are stated in Section 3. Finally,
Sections 4 and 5 are devoted to proofs.

2. THE MODEL

To model the influence of roughness and heterogeneities on wetting we
use a suitable 3D half-infinite Ising model to describe the drop and its
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vapor and an SOS surface to represent the boundary of the wall. Namely,
we will describe the wall by the boundary “W of a half infinite lattice
W … Z3 which represents the substrate, as shown in Fig. 2.

This boundary will be rough (see below for the precise definition
of W) and we shall consider W to be the union of two disjoint subsets W1

and W2. In this way we get an inhomogeneous wall “W=“W1 2 “W2

composed of several pieces of the two different substrates. For the vessel
containing the drop and the gas we take the complement V=Z3 0W.

To each site x of the vessel V, we associate a variable sx which may
take two values; +1 associated to a particle at x, and −1 associated to an
empty site. We assume that the substrate is completely filled, i.e., sx — +1
for all x ¥ W.

Inside the vessel, the variables are coupled with a nearest neighbour
coupling J/2 > 0, representing a nearest neighbour attraction of particles
while at the boundary between the vessel and the substrate the spins of the
vessel are coupled with a nearest neighbour coupling constant, Kx/2 with
the particles of W: Kx=K1 or K2 according x ¥ W1 or x ¥ W2.

Formally, for any finite set W … V these interactions are described by
the Hamiltonian

H s̄
W(s)= −

J
2

C
OxyP x, y ¥ W

(sxsy − 1) −
J
2

C
OxyP x ¥ W, y ¥ W

c
0W

(sxs̄y − 1)

−
Kx

2
C

OxyP x ¥ W, y ¥ W
(sx − 1) (2.1)

Here OxyP denotes nearest neighbour pairs, Wc=Z3 0W is the complement
of W, and s̄ are the chosen boundary conditions defined as s̄=+ or −,
i.e., either s̄y=+1 for all y ¥ Wc 0W or s̄y=−1 for all y ¥ Wc 0W.

Let us now introduce the differential wall tension for the model (2.1).
Considering a finite lattice L(L)={(x1, x2, x3) ¥ Z3: |xi | [ L, i=1, 2, 3},
we let Z+

W(W) and Z−
W(W) be the partition functions of the model (2.1) at

inverse temperature b, in the volume W=L(L) 5 V, with respectively,
+ and − boundary conditions on that part of the boundary of L(L) 5 V
which is not part of the wall (on the wall, the boundary conditions are
always +1). We then define the wall free energy y+W (and similarly y−W) in
term of log Z+

W(W) by subtracting the bulk term as well as the boundary
terms associated with the boundary “W0“W, and taking appropriate limits.
The differential wall tension

Dy=y+W − y−W (2.2)
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is thus defined as: (2, 3, 10, 16, 23)

bDy=− lim
L Q .

1
(2L+1)2 log

Z−
W(W)

Z+
W(W)

(2.3)

For the usual surface tension y+− between the + and − phases we use
the standard definition. (17) Namely, let Z+(L(L)) be the partition function
of the standard Ising model with formal Hamiltonian

−
J
2

C
OxyP

(sxsy − 1)

in the volume L(L) with + boundary conditions on the boundary of L and
Z+−(L(L)) be the partition function with + boundary conditions below
the plane x3=1/2 and − boundary conditions above this plane. Then, the
surface tension y+− is defined by the limit

by+− =− lim
L Q .

1
(2L+1)2 log

Z+−(L(L))
Z+(L(L))

(2.4)

In the perfectly flat case, the set modeling the substrate will be
just the half space W flat={(x1, x2, x3) ¥ Z3 | x3 [ 0} and we let (Dy) flat

1

(resp. (Dy) flat
2 ) correspond to the case of the homogeneous flat wall with

W1=W flat, W2=” (resp. W2=W flat, W1=”).
More generally, we consider a substrate surface “W (defined as the set

of unit plaquettes, whose center intersects the bonds xy, x ¥ W, y ¥ Z3 0W,
in their middle point) given by a periodic Solid-On-Solid type interface, i.e.,
“W corresponds to the graph of a periodic function x3=x3(x1, x2).

For the sake of simplicity, we shall consider a boundary surface “W
given by the graph of the function x3(x1, x2) defined on the cylinder
{1

2 [ x1 [ a+1
2 , 1

2 [ x2 [ a+1
2} by

x3(x1, x2)=˛−b+1
2 for 1

2 [ x1 [ c+1
2 , 1

2 [ x2 [ c+1
2

1
2 otherwise

and determined on the complement of this cylinder by the periodicity (see
Fig. 2).

We take a mesoscopic length-scale for the size of the pores.
Namely, we choose a=a0 f(L), b=b0 f(L), c=c0 f(L), d=d0 f(L),
where limL Q . f(L)=. and limL Q . f(L)/L=0. The roughness of the
wall is r=limL Q +. (1+4bc/a2)=1+4b0c0/a2

0.
Finally to describe heterogeneities, we take W1 as the part of the wall

W below the plane x3=−d+1/2 and W2 as the part of W above this plane
(0 [ d [ b).
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Fig. 2. The substrate surface “W.

We use A1 and A2 to denote the area of the substrate surfaces “W1 and
“W2 and Ā1 and Ā2 their projection onto the horizontal plane. The respec-
tive roughness r1, r2 and concentrations c1, c2 can then be defined by

rk=
Ak

Āk
, ck=

Āk

Ā1+Ā2
, k=1, 2 (2.5)

in terms of which the roughness reads r=r1c1+r2c2.

3. RESULTS

Our first result establishes the validity of the generalized Cassie–
Wenzel’s equation for the model defined in the previous section.

Theorem 1. Assume that the parameters introduced above satisfy
the conditions

C — J 51 − max 1 1
2

,
r+c1 − 1
r+2c1 − 1

26

−|K1 |
r1

r1+1
− |K2 | max 1 1

2
,

r2c2 − c2

r2c2 − c2+c2 − 1
2 > 0 (3.1)

and that the temperature is sufficiently low, namely bC > 5.71, then

Dy=r1c1(Dy) flat
1 +r2c2(Dy) flat

2 (3.2)

The condition (3.1) (which can be viewed as a condition of smallness
of |K1 |/J and |K2 |/J) ensures that the configurations + and − are
the respective ground states of H+ and H−: mins H+

W(s) \ H+
W(−) and

mins H−
W(s) \ H−

W(−). Let h ±(s)=limL Q .

H ±
W (s)

(2L+1)2 be the specific energies

580 De Coninck et al.



per unit surface. One has h+(+)=0 and h−(−)=r1c1K1+r2c2K2. This
implies that the law (3.2) holds true at the level of ground states.

Indeed, letting De=limL Q .

1
(2L+1)2 [mins H−

W(s) − mins H+
W(s)], one

has

De=r1c1K1+r2c2K2 (3.3)

The proof of this result at the level of free energies is given in Section 4. Let
us mention the study on Cassie’s law proposed in ref. 15 whose results do
not rely on the knowledge of ground states.

Our second result concerns the homogeneous case. We will assume
that K1=K2. We let r=1+4b0/c0 be the relative roughness of the pores
and let c −=(c0/a0)2 be the density of the pores.

Theorem 2.

(i) If −J/r < K < J/r, then

Dy=r(Dy) flat (3.4)

(ii) If J/r < K < J, then

Dy=c −y+− +(1 − c −)(Dy) flat (3.5)

(iii) If −J < K < −J/r, then

Dy=−c −y+− +(1 − c −)(Dy) flat (3.6)

As before, it is assumed that the temperature is sufficiently low, see
(5.2) and (5.52).

Let us here stress the physical meaning of these results.
According to the relative strength of the solid/liquid (K) and the

liquid/gaz (J) interactions, the system will mimic one of the ground states
corresponding to situations where either the liquid fills the pores of the
substrate, or leaves these pores empty (see below). In the first case we
recover the Wenzel’s law (3.5) that, according to macroscopic considera-
tions, governs the behaviour of a sessile drop of liquid sitting on top of a
rough and homogeneous wall. However, from these microscopic consider-
ations, we get that a sufficient enhancing of the affinity between the liquid
and the gas phase gives rise to a Cassie-type behaviour due to the addi-
tional liquid/gaz interfaces created by the absence of liquid within the
pores. To see that this difference is a quantitative one, let’s consider for the
sake of definiteness a drop of water on top of a polyethylene therephtalate
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(PET) surface. The wall energy (Dy) flat of PET is 40 mN/m, and the super-
ficial tension y of water is 72.4 mN/m. We thus have:

cos h |Wenzel=
40

72.4
1
r

to be compared to:

cos h |Cassie=
40

72.4
− c − 11+

40
72.4

2

A typical roughness for such a surface is 1.5. We thus get that versus c −, the
cosine of the equilibrium contact angle h behaves as depicted in Fig. 3.

Let us emphasize that this result, if it can be carried over to real sur-
faces, suggests that the wetting properties of a rough wall are not only
driven by the roughness r of the wall, but do also depend on the particular
geometry that gives rise to r.

We end this section with the ground states description in the homo-
geneous case. Let s+

k be the configuration with all + above the plane
x3=k+1/2 (k \ 0) and all − below this plane. It is easy to check that

Fig. 3. Dependence of the equilibrium contact angle h on the ‘‘density of pores’’ c − exhibit-
ing a transition between a Wenzel’s regime (1) and a Cassie’s regime (2).
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these configurations together with the configuration with all + minimize
the Hamiltonian with + boundary conditions. One has mins H+

W(s) \

mins ¥ {+, s
+
k } H+

W(s) and the specific energy h+(s) takes the following
values:

h+(+)=0

h+(s+
0 )=

c2

a2 J+
c2+4bc

a2 K (3.7)

h+(s+
k )=J+rK for all finite k \ 1

Notice that h+(+)=h+(s+
0 ) on the line K=−J/r and h+(s+

0 )=h(s+
k ) on

the line K=−J. Analogously, let s−
k be the configuration with all − above

the plane x3=k+1/2 and all + below this plane.
One has mins H−

W(s) \ mins ¥ { − , s
−
k } H−

W(s) and:

h−(−)=rK

h−(s−
0 )=

c2

a2 J+
a2 − c2

a2 K (3.8)

h−(s−
k )=J for all finite k \ 1

Notice that h−(−)=h−(s−
0 ) on the line K=J/r and h−(s−

0 )=h−(s−
k ) on

the line K=J.
The formulae (3.7) and (3.8) lead to the phase diagram shown in

Fig. 4.

Fig. 4. The diagram of ground states.
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They show that the results (3.4)–(3.6) hold true at the level of ground
state. Indeed,

De=rK (3.9)

when − J/r < K < J/r,

De=c −J+(1 − c −)K (3.10)

when J/r < K < J, and finally

De=−c −J+(1 − c −)K (3.11)

when −J < K < −J/r.
The proof of these results at the level of free energies is given in

Section 5.

4. PROOF OF THEOREM 1

To prove the result at the level of free energies, we have to take
into account the excitations of ground states. To this end we begin with
a contour representation of partition functions Z+

W(W) and Z−
W(W).

A natural definition is to consider the contours as boundaries of regions
where the considered configuration differs from the corresponding ground
state configuration.

For Z+
W(W) we have a standard representation introducing for any

configuration s (such that sx=+1 for all x ¥ Wc) the contours as con-
nected components of the set B+(s) of all plaquettes of the dual lattice that
separate two neighbouring sites x, y ¥ V with sx ] sy.

For any contour c we introduce the weight factor

z+(c)=e−b(J |cbk |+K1 |cW1
|+K2 |cW2

|) (4.1)

Here we define cWi
=c 5 “Wi, i=1, 2, and cbk=c0(cW1

2 cW2
); |cbk |, |cWi

|, is
the number of plaquettes of cbk, cWi

, respectively. In terms of the weight
factors z+(c) one clearly has

Z+
W(W)= C

{c1,..., cn}comp

D
n

i=1
z+(ci) (4.2)

where {c1,..., cn}comp is a collection of compatible (mutually disjoint) con-
tours in W.

To get a similar expression for Z−
W(W), we only have to be careful with

the definition of contours touching the wall. Namely, for configurations s
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such that sx=+1 for x ¥ W and sx=−1 for x ¥ Wc 0W, we introduce
contours as connected component of the set B−(s) of all plaquettes
separating nearest neighbour sites x, y ¥ V for which sx ] sy or nearest
neighbour sites x ¥ V, y ¥ W for which sx=sy(=+1). Introducing now the
weight z−(c) as

z−(c)=e−b(J |cbk | − K1 |cW1
| − K2 |cW2

|) (4.3)

we get

Z−
W(W)=e−bK1A1(W) − bK2A2(W) C

{c1,..., cn}comp

D
n

i=1
z−(ci) (4.4)

where Ai(W) is the number of bonds xy, x ¥ W, y ¥ Wi. Notice that the set
of contours in both situations exactly coincide (even though the weights do
not) and the sums in (4.2) and (4.4) are over exactly the same collections of
contours. Notice also that the weights (4.1) (4.3) differs only if c touches the
wall i.e., if c 5 “W ] ”.

To be able to control, in terms of convergent cluster expansions,
ln Z+

W(W) and ln Z−
W(W), the weights z+(c) and z−(c) must satisfy the

dumping condition |z ±(c)| [ e−l |c|, where l is a fixed sufficiently large con-
stant and |c|=|cbk |+|cW1

|+|cW2
|. To find upper bounds for |z−(c)| and

|z+(c)| we notice that

J |cbk | − |K1 | |cW1
| − |K2 | |cW2

|

=5J − J
|cW1

|+|cW2
|

|c|
− |K1 |

|cW1
|

|c|
− |K2 |

|cW2
|

|c|
6 |c|

Realizing by easy geometrical observations that the term inside brackets is
greater than C, one gets by the definitions (4.1) and (4.3):

|z ±(c)| [ e−bC |c| (4.5)

We now introduce multi-indexes in order to write the logarithm of the
partition functions Z+

W(W) and Z−
W(W) as a sum over these multi-indexes

(see ref. 20). A multi-index X is a function from the set of contours into the
set of non negative integers, and we let supp X={c: X(c) \ 1}. We define
the truncated functionals

F ±(X)=
a(X)

<c X(c)!
D

c

z ±(c)X(c) (4.6)

where the factor a(X) is a combinatoric factor defined in terms of the
connectivity properties of the graph G(X) with vertices corresponding to
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c ¥ supp X (there are X(c) vertices for each c ¥ supp X) that are connected
by an edge whenever the corresponding contours are incompatible).
Namely, a(X)=0 and hence F ±(X)=0 unless G(X) is a connected graph
and

a(X)= C
G … G(X)

(−1) |e(G)| (4.7)

Here the sum goes over connected subgraphs G whose vertices coincide
with the vertices of G(X) and |e(G)| is the number of edges of the graph G.
If the cluster C contains only one contour, then a(c)=1.

The standard cluster expansion, (13, 17, 30) then yields

ln C
{c1,..., cn}comp

D
n

i=1
z ±(c)= C

X ¥ q(W)
F ±(X) (4.8)

Here q(W) is the set of all multi-indexes X having all contours in W.
The convergence of the cluster expansion holds, cf. refs. 13 and 20, as

soon as one can find a positive real-valued function m(c) such that

z(c) exp 3− C
cŒ ¾ c

m(c −)4 [ m(c)

Here the sum runs over contours c − incompatible with c: this relation is
denoted by c − ¾ c and means that c − intersects c. Taking into account that
the number contours c of size a passing to a given point is less then 122a,
the area of contours is even, with minimal value |cmin|=6, that
;cŒ ¾ c m(c −) [ |c| ;cŒ ¦ p m(c −), and choosing m(c)=(122e t)−|c|, the above
convergence condition will be satisfied here whenever

bC > ln 122+t+
e−6t

1 − e−2t \ 5.71 (4.9)

It implies

C
X: X(c) \ 1

|F ±(X)| [ m(c) (4.10)

As a result of (4.8) we can write

ln Z+
W(W) − ln Z−

W(W) − bK1A1 − bK2A2= C
X ¥ q(W)

[F+(X) − F−(X)]
(4.11)
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By definitions (4.1) and (4.3) the contributions of the contours in the bulk
are exactly the same for the + or − b.c. Thus all terms with X supported
by contours not touching the wall are canceled in the above difference of
the logarithms and only the sum over X containing contours touching the
wall remains. We use qW(W) to denote the set of all such multi-indexes X.
Then,

ln Z+
W(W) − ln Z−

W(W) − bK1A1 − bK2A2= C
X ¥ qW(W)

[F+(X) − F−(X)] (4.12)

Using the fact that z ±(c) are invariant under horizontal translation by
multiples of the periodicity constant a and satisfy the bound (4.5), one get,

Dy − r1c1K1 − r2c2K2= lim
L Q .

1
b(2L+1)2 C

X ¥ qW(W)
[F+(X) − F−(X)]

= lim
a Q .

1
ba2 C

X ¥ qW(Wa)
[F+(X) − F−(X)] (4.13)

where Wa=V 5 La, with

La={x ¥ Z3 : 0 [ x1 [ a, 0 [ x2 [ a, |x3 | [ a}

Let us now turn to the flat walls. Let W − be a box in the semi-infinite
lattice

L={(x1, x2, x3) ¥ Z3 : x3 > 0}

and let P=“W flat be the plane x3=1/2. We let Z ±
Wflat

1
(W −) and Z ±

Wflat
2

(W −) be
the partition functions corresponding to the case of the flat walls. We
define the contours as before and introduce the weights

z ±
j (c)=e−bJ(|cbk | ± Kj |cf |) (4.14)

Here cf=c 5 P and cbk=c0cf; we say that c touches P if it contains
plaquettes of this plane. Then,

Z+
Wflat

i
(W −)= C

{c1,..., cn}comp

D
n

i=1
z+

j (ci) (4.15)

Z−
Wflat

i
(W −)=e−bKiA(WŒ) C

{c1,..., cn}comp

D
n

i=1
z−

j (ci) (4.16)
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Here {c1,..., cn}comp are collections of compatible contours in W − and A(W −)
is the number of bonds xy, x ¥ W −, y ¥ Z3 0W −, that cross the plane P. We
let F ±

i be the truncated functional associated to the weights (4.14). Then

ln Z+
Wflat

i
(WŒ) − ln Z−

Wflat
i

(WŒ) − bKiA(WŒ)= C
X ¥ qP(WŒ)

[F+
i (X) − F−

i (X)] (4.17)

where qP(WŒ) is the set of multi-indexes of q(WŒ) whose support intersect
the plane P. Using that the weights are now completely invariant with
respect to horizontal translations, we have

(Dy) flat
1 − K1= lim

L Q .

1
ba2 C

X ¥ qP(W
−

a)
[F+

1 (X) − F−
1 (X)]

= C
X ¥ qP(L) p ¥ X

[F+
1 (X) − F−

1 (X)]
|X 5 P|

— F1 (4.18)

and

(Dy) flat
2 − K2= lim

L Q .

1
ba2 C

X ¥ qP(W
−

a)
[F+

2 (X) − F−
2 (X)]

= C
X ¥ qP(L) p ¥ X

[F+
2 (X) − F−

2 (X)]
|X 5 P|

— F2 (4.19)

Here W −

a=La 5 L and the two last sums in (4.18), (4.19) are over multi-
indexes whose support contains a given plaquette of the plane P.

Our last step is to compare the R.H.S. of (4.13) with (4.18) and (4.19).
To this end, we split the sum over multi-indexes X ¥ qPW

(Wa) in three
terms S1(a), S2(a), and R(a). The first term S1(a) is the sum over X that
intersect only one face of the part (“W1)a of the boundary of the wall that
separates W1 from Wa. Notice that for the multi-indexes X involved in this
sum, one has F+(X)=F+

1 (X). Furthermore, since (“W1)a has five faces,
S1(a) is the sum of five terms and each of them divided by the area of cor-
responding face will actually equal F1 in the limit a Q .. Thus

lim
a Q .

S1(a)/ba2=r1c1F1

The second term S2(a) is the sum over multi-indexes that intersect only one
face of the part (“W2)a of the boundary of the wall that separates W2

from Wa. In that case F ±(X)=F ±
2 (X) and we get analogously to the pre-

vious situation

lim
a Q .

S2(a)/ba2=r2c2F2
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Finally, the reminder R(a) contains the terms where the supports of multi-
indexes intersect at least two faces of (“W)a=(“W1)a 2 (“W2)a. It thus can
be bounded by a constant times the length of the boundary of faces (for
the adjacent ones) plus a term proportional to the area of the vertical faces
times a negative exponential small correction with a power proportional to
the length between the opposed faces. Thus the ratio R(a)/ba2 goes to 0 as
a goes to infinity and we get

Dy − r1c1K1 − r2c2K2=r1c1F1+r2c2F2

giving the desired result.

5. PROOF OF THEOREM 2

We first consider the proof of Wenzel’s regime stated in (3.4) when
|K| < J/r. In this situation, the condition on the parameters K and J
ensures that the configurations + and − are the respective ground states of
H+ and H−. Here, one has simply to notice that for the homogeneous wall
the weights of contours satisfy

|z ±(c)| [ e−b( J − r|K|
r+1 ) |c| (5.1)

The situation then turns out to be a particular case of the problem already
analyzed in Section 4. The needed condition on the temperature is

b
J − r |K|

r+1
> 5.71 (5.2)

We now turn to the proof of Cassie’s regime stated in (3.5) assuming that
J/r < K < J.

5.1. The Flat Differential Tension (Dy)flat

Let us first consider the partitions functions Z ±
Wflat(W −) corresponding

to a flat wall in a box W − … L. For the partition function Z−
Wflat(W −) we

define the contours (as in Section 4) as connected component of the set
B−(s) of all plaquettes separating nearest neighbour sites x, y for which
sx ] sy if the bond xy does not cross the plane P or nearest neighbour
sites x, y for which sx=sy if the bond xy crosses the plane P. We intro-
duce the weights

z−
f (c)=e−b(J |cbk | − K |cf |) (5.3)
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where cf=c 5 P and cbk=c0cf. In term of these weights, one has

Z−
Wflat(WŒ)=e−bKA(WŒ) C

{c1,..., cn}comp

D
n

i=1
z−

f (ci) (5.4)

where {c1,..., cn}comp are families of compatible contours in W − and A(W −) is
the number of bonds xy, x ¥ W −, y ¥ Z3 0W −, that crosses the plane P. For
the partition function Z+

Wflat(W −) we use the standard definition of contours
and introduce the weights

z+
f (c)=e−b(J |cbk |+K |cf |) (5.5)

to get

Z+
Wflat(W −)= C

{c1,..., cn}comp

D
n

i=1
z+

f (ci)=exp 1 C
X ¥ q(WŒ)

F2+
f (X)2 (5.6)

where F2+
f is the truncated functional corresponding to z+

f . It will be
convenient to sum over the multi-indexes with same support. We thus
introduce the functional

F+
f (S)= C

X: supp X=S
F2+

f (X) (5.7)

to get

Z+
Wflat(W −)= C

{c1,..., cn}comp

D
n

i=1
z+

f (ci)=exp 1 C
S ¥ q(WŒ)

F+
f (S)2 (5.8)

where (with an abuse of notation) q(W −) denote the set of the supports of
multi-indexes in W. The supports of multi-indexes will be called clusters.

Since by definitions the weights of contours are the same for contours
not touching the plane P, we have

Z−
Wflat(W −)=e−bKA(WŒ) C

{c1,..., cn}comp
ci 5 P ] ”

D
n

i=1
z−

f (ci) C
{c −

1,..., c −
m}comp

c −
j 5 P=”, c −

j ’ ci

D
m

i=1
z+

f (c −

j) (5.9)

Here the first sum is over (compatible) families of contours touching the
plane P and the second ones is over (compatible) families of contours not
touching the plane P and compatible with the first family. From relations
(5.8) and (5.9) one has
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Z−
Wflat(W −)

Z+
Wflat(W −)

=e−bKA(WŒ) C
{c1,..., cn}comp

ci 5 P ] ”

D
n

i=1
z−

f (ci) exp 1− C
S: S ¥ qP(WŒ)

or S ¾ ci

F+
f (S)2

=e−bKA(WŒ) C
{c1,..., cn}comp

ci 5 P ] ”

D
n

i=1
z−

f (ci) D
S: S ¥ qP(WŒ)

or S ¾ ci

e−F
+
f (S) (5.10)

where the sum in the exponential and in the last product are over clusters S
touching the plane P or incompatible with some contour ci of the family
{c1,..., cn} (the relation denoted S ¾ ci means that S intersects ci), or both.
To expand this product, we define the aggregates A as connected families
of clusters. Introducing the weights

r2f(A)= D
S ¥ A

e−F
+
f (S) − 1 (5.11)

we get

Z−
Wflat(W −)

Z+
Wflat(W −)

=e−bKA(WŒ) C
{c1,..., cn}comp

ci 5 P ] ”

D
n

i=1
z−

f (ci) C
{A1,..., Am}comp

Aj 5 P ] ” or 4 Aj ¾ ci

D
m

j=1
r2f(Aj) (5.12)

where the second sum is over families of aggregates touching the wall or
incompatible with a contour of the family {c1,..., cn}.

As it was done for multi-indexes, it is convenient to sum over all
aggregates with the same support. We define the weight

rf(S)= C
A={S1,..., Sn}: 1 Si=S

r2f(A) (5.13)

This leads to

Z−
Wflat(W −)

Z+
Wflat(W −)

=e−bKA(WŒ) C
{c1,..., cn}comp

ci 5 P ] ”

D
n

i=1
z−

f (ci) C
{S1,..., Sm}comp

Sj 5 P ] ” or 4 Sj ¾ ci

D
m

j=1
rf(Sj)

We call excitation a subset C … {c1,..., cn}comp 2 {S1,..., Sm}comp whose
support supp C=(1c ¥ C c) 2 (1S ¥ C) is connected and define the weight of
an excitation C by:

wf(C)=D
c ¥ C

z−
f (c) D

S ¥ C

rf(S) (5.14)
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Then

Z−
Wflat(W −)

Z+
Wflat(W −)

=e−bKA(WŒ) C
{C1,..., Cn}comp

supp Ci 5 P ] ”

D
n

i=1
wf(Ci) (5.15)

where the sum runs over compatible families {C1,..., Cn}comp of excitations.
For J/r < K < J the weights satisfy the bound

|z+
f (c)| [ e−bK |c| (5.16)

|z−
f (c)| [ e−b( J − K

2 ) |c| (5.17)

The truncated functional are then bounded as:

|F+
f (S)| [ |S|(one−bK) |S|

Here the cluster constant may be computed as o=1+2(`2+1) e
2

1+`2 and
the entropy as n=3228 (see ref. 12). The weights of aggregates may be con-
trolled with the inequality |e−F

+
f (S) − 1| [ (e − 1) |F+

f (S)|. This allows to
show (see again ref. 12):

|rf(S)| [ |8e(e − 1) on2e−bK| |S| (5.18)

provided 8e(e − 1) on2e−bK [ 1.
We will now exponentiate the R.H.S. of (5.15). To this ends we intro-

duce multi-indexes C defined on the set of excitations, i.e., as functions
from the set of excitations into the set of non negative integers. We let
supp C={C: C(C) \ 1} and let Yf be the truncated functional associated
to wf :

Yf(C)=
a(C)

<c C(C)!
D

C

wf(C)C(C) (5.19)

where a(C) is defined as in (4.7) with a graph G(C) whose vertices corre-
spond to excitations C ¥ supp C and that are connected by an edge when-
ever the corresponding excitations are incompatible. We get as a result of
cluster expansion

ln
Z−

Wflat(W −)
Z+

Wflat(W −)
+bKA(W −)= C

C ¥ qP(WŒ)
Yf (C) (5.20)
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Using that the weights are now completely invariant with respect to
horizontal translations, we have taking W −=L(L) 5 L

(Dy) flat − K= lim
L Q .

1
b(2L+1)2 C

C ¥ qP(WŒ)
Yf (C)= C

C ¥ qP(L)
p ¥ C

Yf (C)
|C 5 P|

— Ff (5.21)

Here the last sum is over multi-indexes whose support contains a given
plaquette of the plane P. This series converges provided one can find a
positive function such that

w(C) exp 3 − C
CŒ ¾ C

m(C −)4 [ m(C)

This condition is fulfilled whenever

2no max (e−b( J − K
2 ), 8e(e − 1) on2 e−bK) [ 1

To see it, we put m(C)=(2na)−|C| where |C| is the number of plaquet-
tes of supp C, getting ;CŒ ¾ C m(C −) [ 22

a − 1 |C|. We then choose for a the
value 1+2(1+`2) that minimizes the function ae

22

a − 1.

5.2. The Surface Tension y+−

We now turn to the surface tension y+− . An important property of this
surface tension is that it can be defined as an appropriated limit of (2.4)
with many different boxes L. (4) Indeed, one can take instead of L(L), the
set

{x ¥ Z3 : |x1 | [ L, |x2 | [ L, h(L) < x3 [ g(L)}

provided the height functions −h and g goes to infinity in the limit when L
tends to infinity. Here we shall consider the box

Wc, b={x ¥ Z3 : 0 [ x1 [ c, 0 [ x2 [ c, −b [ x1 [ L}

and let Z+(Wc, b) be the partition function of the Ising model in the box
Wc, b with + boundary condition and Z+−(Wc, b) be the partition function
with + boundary condition below the plane P and − boundary condition
above this plane. Then

by+− =− lim
L Q .

1
c2 ln

Z+−(Wc, b)
Z+(Wc, b)

(5.22)
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Instead of y+− we shall study an auxiliary differential tension (Dy)aux

that will eventually coincide with y+− . Consider the box Wc, b (associated to
a single pore), and let Z+

Wpore(Wc, b) and Z−
Wpore(Wc, b) be the partitions func-

tions corresponding to the Hamiltonian (2.1) in the box Wc, b with+ and −
boundary conditions respectively. This means that the partition function
Z+

Wpore(Wc, b) (resp. Z−
Wpore(Wc, b)) differs from the partition function Z+(Wc, b)

(resp. Z+−(Wc, b)) only by the fact that the coupling between bonds xy
x ¥ Wc, b y ¨ Wc, b below the plane P is K instead of J. We define

b(Dy)aux=− lim
L Q .

1
c2 ln

Z−
Wpore(Wc, b)

Z+
W

pore(Wc, b)
(5.23)

For the partition function Z−
Wpore(Wc, b), we define contours as con-

nected component of the set of all plaquettes separating nearest neighbour
sites x, y for which sx ] sy if the bond xy does not cross the plane P or
nearest neighbour sites x, y for which sx=sy if the bond xy crosses the
plane P. We introduce the weights

z−
pr(c)=e−b(J |cbk | − J |c0|+K |cpr |) (5.24)

Here c0=c 5 P is the set of dual plaquettes of bond crossing the plane P,
cpr is the set of dual plaquettes of bonds xy, x ¥ Wc, b y ¨ Wc, b below the
plane P and cbk=c0(c0 5 cpr). We will say that the contour c touches the
wall if cpr is not empty. Then,

Z−
Wpore(Wc, b)=e−bJA(Wc, b) C

{c1,..., cn}comp

D
n

i=1
z−

pr(ci) (5.25)

where A(Wc, b) is the number of bonds xy of Wc, b that crosses the plane P

(and {c1,..., cn}comp is a collection of compatible contours in Wc, b).
For the partition function Z+

Wpore(Wc, b) we use the standard represen-
tation of contours and define the weights

z+
pr(c)=e−b(J |cbk |+J |c0|+K |cpr |) (5.26)

getting

Z+
Wpore(Wc, b)= C

{c1,..., cn}comp

D
n

i=1
z+

pr(ci)=exp 1 C
X ¥ q(Wc, b)

F2+
pr(X)2

=exp 1 C
S ¥ q(Wc, b)

F+
pr(S)2 (5.27)
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where F2+
pr is the truncated functional associated to z+

pr, and as above we
have summed over all multi-indexes with same support:

F+
pr(S)= C

X: supp X=S
F2+

pr(X)

Since by definitions the weights of contours are the same for contours
not touching the plane P, we have

Z−
Wpore(Wc, b)=e−bJA(Wc, b) C

{c1,..., cn}comp
ci 5 P ] ”

D
n

i=1
z−

pr(ci) C
{c −

1,..., c −
m}comp

c −
j 5 P=”, c −

j ’ ci

D
m

i=1
z+

pr(c −

j)

Here the first sum is over (compatible) families of contours touching the
plane P and the second ones is over (compatible) families of contours not
touching the plane P and compatible with the first family.

By taking into account (5.27), one gets

Z−
Wpore(Wc, b)

Z+
Wpore(Wc, b)

=e−bJA(Wc, b) C
{c1,..., cn}comp

ci 5 P ] ”

D
n

i=1
z−

pr(ci) exp 1 − C
S: S ¥ qP(Wc, b)

or S ¾ ci

F+
pr(S)2

=e−bJA(Wc, b) C
{c1,..., cn}comp

ci 5 P ] ”

D
n

i=1
z−

pr(ci) D
S: S ¥ qP(Wc, b)

or S ¾ ci

e−F
+
pr (S) (5.28)

As above, to expand the last product we introduce aggregates A as
families of clusters whose support is connected and define the weights
r2pr(A)=<S ¥ A e−F

+
pr (S) − 1 to get

Z−
Wpore (Wc, b)

Z+
Wpore (Wc, b)

=e−bJA(Wc, b) C
{c1,..., cn}comp

ci 5 P ] ”

D
n

i=1
z−

pr(ci) C
{A1,..., Am}comp

Aj 5 P ] ” or 4 Aj ¾ ci

D
m

j=1
r2pr(Aj) (5.29)

Here again, it is convenient to sum over all aggregates with the same
support. We thus define the weights

rpr(S)= C
A={S1,..., Sn}: 1 Si=S

r2pr(A)

getting

Z−
Wpore(Wc, b)

Z+
Wpore(Wc, b)

=e−bJA(Wc, b) C
{c1,..., cn}comp

ci 5 P ] ”

D
n

i=1
z−

pr(ci) C
{S1,..., Sm}comp

Sj 5 P ] ” or 4 Sj ¾ ci

D
m

j=1
rpr(Sj)
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Notice that the weight z−
pr(c) do not always decrease with the area of

contours. To control the ratio of the two partition functions above in terms
of convergent cluster expansion, we have to define the right excitations. To
this end, we first split the set {c1,..., cn}comp 2 {S1,..., Sm}comp in connected
components. The components whose support touches the wall Wpore are
called wall excitations and denoted Cwall. We use Bpr to denote the subset
composed of wall excitations and Bbk to denote its complement. For the
wall excitations, we define the weights

wpr(Cwall)= D
c ¥ C

wall
z−

pr(c) D
S ¥ C

wall
rpr(S) (5.30)

Note that |z+
f (c)| [ e−bK |c| and therefore rpr(S) satisfy the bound (5.18). On

the other hand, for the wall excitations one has

|z−
f (c)| [ e−b( r|K| − J

1+r
) |c|

for any c ¥ Cwall. This implies that the weights (5.30) have good decaying
properties for large b.

For the remaining part Bbk, this is not the case and we have to intro-
duce the excitations differently. In the situation under consideration, they
can be defined following the Dobrushin’s analysis given in ref. 14 (see also
refs. 5, 6, 21). Namely, for any component B ¥ Bbk and any contour c ¥ B
touching the plane P, we will divide the set of plaquettes of c in two sets.
An horizontal plaquette p ¥ c is called correct (or ceiling face in the termi-
nology of ref. 14) if it lies on the plane P or if the vertical lines that crosses
it in its middle crosses only two horizontal plaquettes of Bbk. All the other
plaquettes of c are called incorrect (or wall faces in the terminology of
ref. 14). We use I(Bbk) to denote the set of incorrect plaquettes of Bbk. Then
the union of I(Bbk) with the set of clusters S ¥ Bbk splits into connected
components Cel={p1,..., pn; S1,..., Sm} called elementary excitations (or
walls in the terminology of ref. 14). A set Bbk={c1,..., cn} such that
ci 5 P ] ” is in one-to-one correspondence with a set of elementary exci-
tations. An elementary excitation Cel={p1,..., pn; S1,..., Sm} is said in the
standard position if there exists a contour c such that {p1,..., pn} is the only
elementary excitation corresponding to c.

Let Th denotes the vertical shift by a height h: Th(x)=(x1, x2, x3+h),
Th(A)={x: T−1

h (x) ¥ A} . Then for any elementary excitation, there is only
one shifted excitation C sh=Th(Cel) which is in the standard position (see
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ref. 14 or Lemma 2.2 in ref. 18). We define the weights of any shifted or
elementary excitation by

wpr(C sh)=wpr({p1,..., pn; S1,..., Sm})=e−bJn D
m

j=1
rpr(Sj) (5.31)

With these definitions, we get from (5.29):

Z−
Wpore(Wc, b)

Z+
W

pore(Wc, b)
=e−bJA(Wc, b) C

{C
wall
1 ,..., C

wall
n , C

sh
1 ,..., C

sh
m }comp

Ck 5 P=”

Z−
Wpore(Wc, b)

Z+
W

pore(Wc, b)
(5.32)

where {Cwall
1 ,..., Cwall

n , C sh
1 ,..., C sh

m }comp are families of (compatible) walls or
shifted excitations whose support touches the plane P. We introduce as
before the multi-indexes C as non compatible families of excitations and let
Ypr be the corresponding truncated functional to get

ln
Z−

Wpore(Wc, b)
Z+

W
pore(Wc, b)

+bJA(Wc, b)= C
C ¥ qP(Wc, b)

Ypr (C) (5.33)

Here, the convergence condition reads

2no max(e−b( r |K| − J
1+r

), 8e(e − 1) on2e−bK) [ 1

By definition (5.23) of the auxiliary tension (Dy)aux, this relation gives

b(Dy)aux −bJ=− lim
L Q .

1
c2 C

C ¥ qP(Wc, b)

supp C 5 W
pore

=”

Ypr (C)− lim
L Q .

1
c2 C

C ¥ qP(Wc, b)

supp C 5 W
pore

] ”

Ypr (C)

(5.34)

where supp C=1C ¥ C supp C. The second limit actually goes to zero. This
may be seen by realizing that the sum over multi-indexes whose support
touches both the plane P and Wpore is composed of a term proportional to
the perimeter of the square c2 (for multi-indexes touching the vertical faces
of Wpore) plus a term proportional to c2 times an exponential small correc-
tion proportional to b (for multi-indexes touching the horizontal face
of Wpore. The first limit gives actually the free energy of excitations of the
surface tension y+− so that

(Dy)aux=y+− (5.35)

Wetting of Heterogeneous Surfaces at the Mesoscopic Scale 597



5.3. The Differential Tension Dy

We finally turn to the differential wall tension of the rough wall. For
the partition function Z−

W(W), we have again to be careful with the defini-
tion of contours. For configurations s (such that sx=+1 for x ¥ W and
sx=−1 for x ¥ Wc 0W), we introduce now contours as connected compo-
nent of the set B0(s) of all plaquettes separating nearest neighbour sites
x, y for which sx ] sy if the bond xy does not cross the plane P or nearest
neighbour sites x, y for which sx=sy if the bond xy crosses the plane P.
We define the set (“W)f=P 5 “W, to be the part of the boundary of the
wall intersecting the plane P, the set (“W)pr=“W0(“W)f to be its
complement and the set P0=P0(“W)f to be the complement of (“W)f.

From the definition of B0(s) (defined as the boundary of regions
where the configuration differs from the ground state s−

0 ), it follows that
the configuration sc associated to the unique contour c satisfy:

H−
W(sc) − H−

W(s−
0 )=J |cbk |+K |cpr | − K |cf | − J |c0 | (5.36)

where cpr=c 5 (“W)pr, cf=c 5 (“W)f is the part of the contour that inter-
sect (“W)pr, respectively (“W)f, c0=c 5 P0 is the part of the contour that
intersect P0, and cbk=c0(cpr 2 cfl 2 c0) is the complement of these three
sets. Introducing now the weight z−(c) as

z−(c)=e−b(J |cbk |+K |cpr | − K |cf | − J |c0|) (5.37)

we get

Z−
W(W)=e−b[KAf(W)+JA0(W)] C

{c1,..., cn}comp

D
n

i=1
z−(ci) (5.38)

where Af(W), is the number of bonds xy, x ¥ W, y ¥ W that crosses (“W)f

and A0(W) is the number of bonds xy, x ¥ W, y ¥ W that crosses P0.
For Z+

W(W) we keep the standard definitions of contours, so that
introducing the weight factors

z+(c)=e−b(J |cbk |+K |cpr |+K |cf |+J |c0|) (5.39)

we get

Z+
W(W)= C

{c1,..., cn}comp

D
n

i=1
z+(ci)=exp 1 C

X ¥ q(W)
F2+(X)2

=exp 1 C
S ¥ q(W)

F+(S)2 (5.40)
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where F2+ is the truncated functional associated to z+
pr, and as above we

summed over all multi-indexes with same support:

F+(S)= C
X: supp X=S

F2+(X)

Note that the weights z+(c) are bounded as

|z+(c)| [ e−bK |c| (5.41)

Since by definitions the weights of the contours not touching the plane
P are exactly the same for + or − b.c., we have

Z−
W(W)=e−b[KAf(W)+JA0(W)] C

{c1,..., cn}comp
ci 5 P ] ”

D
n

i=1
z−(ci) C

{c −
1,..., c −

m}comp
c

−

j 5 P=”, c −
j ’ ci

D
m

i=1
z+(c −

j) (5.42)

which gives by taking into account (5.40)

Z−
W(W)

Z+
W(W)

=e−b[KAf(W)+JA0(W)] C
{c1,..., cn}comp

ci 5 P ] ”

D
n

i=1
z−(ci) exp 1− C

S: S ¥ qP(W)
or S ¾ ci

F+(S)2

=e−b[KAf(W)+JA0(W)] C
{c1,..., cn}comp

ci 5 P ] ”

D
n

i=1
z−(ci) D

S: S ¥ qP(W)
or S ¾ ci

e−F
+(S) (5.43)

To expand the last product we introduce again aggregates A as families
of clusters S whose support is connected and define the weights r2(A)=
<S ¥ S e−F

+(A) − 1 to get

Z−
W(W)

Z+
W(W)

=e−b[KAf(W)+JA0(W)] C
{c1,..., cn}comp

ci 5 P ] ”

D
n

i=1
z−(ci) C

{A1,..., Am}comp
Aj 5 P ] ” or 4 Aj ¾ ci

D
m

j=1
r2(Aj)

(5.44)

Again, we sum over all aggregates with the same support by defining
the weights

r(S)= C
A={S1,..., Sn}: 1 Si=A

r2(A)
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to get

Z−
W(W)

Z+
W(W)

=e−b[KAf(W)+JA0(W)] C
{c1,..., cn}comp

ci 5 P ] ”

D
n

i=1
z−(ci) C

{S1,..., Sm}comp
Sj 5 P ] ” or 4 Sj ¾ ci

D
m

j=1
r(Sj)

(5.45)

As in the previous section the weights z−(c) have good decaying properties
only for contours touching the wall. To control the ratio, we proceed as
for the study of the surface tension y+− . Namely, we first split the set
{c1,..., cn}comp 2 {S1,..., Sm}comp in connected components. The components
whose support touches the wall W are called wall excitations and denoted
Cwall. We use BW to denote the subset of {c1,..., cn}comp 2 {S1,..., Sm}comp

composed of wall excitations and Bbk to denote its complement. For the
wall excitations, we define the weights

w(Cwall)= D
c ¥ C

wall
z−(c) D

S ¥ C
wall

r(S) (5.46)

Since |z+
f (c)| [ e−bK |c|, rpr(S) satisfy the bound (5.18). On the other hand,

for these wall excitations one has

|z−
f (c)| [ min(e−b( J − K

2 ) |c|, e−b( r|K| − J
1+r

) |c|)

for any c ¥ Cwall. This implies that the weights (5.30) have good decaying
properties for large b.

For the remaining part Bbk this is not the case and we have to intro-
duce the excitations differently. We shall define them as in the study of the
auxiliary tension (Dy)aux. Namely, for any B ¥ Bbk and any contour c ¥ B
touching the plane P, we will divide the set of plaquettes of c in two sets. A
plaquette p ¥ c is called correct if it lies on the plane P or if the vertical
lines that crosses it in its middle crosses only two horizontal plaquettes
of Bbk. All the other plaquettes of c are called incorrect: in particular, all
the vertical plaquettes are incorrect ones. We use I(Bbk) to denote the set of
incorrect plaquettes of Bbk. Then the union of I(Bbk) with the set clusters
S ¥ Bbk split into connected components {p1,..., pn; S1,..., Sm} called ele-
mentary excitations. A set Bbk={c1,..., cn} such that ci 5 P ] ” is in one-
to-one correspondence with a set of elementary excitations. An elementary
excitation Cel={p1,..., pn; S1,..., Sm} is said in the standard position if there
exists a contour c such that {p1,..., pn} is the only elementary excitation
corresponding to c.

Let Th denotes the vertical shift by a height h: Th(x)=(x1, x2, x3+h),
Th(A)={x: T−1

h (x) ¥ A} . Then for any elementary excitation, there is only
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one shifted excitation C sh=Th(Cel) which is in the standard position. We
define the weights of any shifted or elementary excitation by

w(C sh)=w({p1,..., pn; S1,..., Sm})=e−bJn D
m

j=1
r(Sj) (5.47)

With these definitions, we get from (5.45):

Z−
W(W)

Z+
W(W)

=e−b[KAf(W)+JA0(W)] C
{C

wall
1 ,..., C

wall
n , C

sh
1 ,..., C

sh
m }comp

Ck 5 P=”

D
n

i=1
w(Cwall

i ) D
m

j=1
w(C sh

i )

(5.48)

where {Cwall
1 ,..., Cwall

n , C sh
1 ,..., C sh

m }comp are families of (compatible) wall or
shifted excitations whose support touches the plane P. We introduce as
before the multi-indexes C as non compatible families of excitations and let
Y be the corresponding truncated functional associated to w to get

ln
Z−

W(W)
Z+

W(W)
+b[KAf(W)+JA0(W)]= C

C ¥ qP(W)
Y(C) (5.49)

Using the fact that Y(C) are invariant under horizontal translation by
multiples of the periodicity constant a, one gets,

Dy − (1 − c −) K − c −J= lim
L Q .

1
b(2L+1)2 C

C ¥ qP(W)
Y(C)

= lim
a Q .

1
ba2 C

C ¥ qP(Wa)
Y(C) (5.50)

where Wa=V 5 La, with

La={x ¥ Z3 : 0 [ x1 [ a, 0 [ x2 [ a, |x3 | [ a}

To fulfill the convergence conditions we need to take

2no max(e−b( J − K
2 ), e−b( rK − J

1+r
), 8e(e − 1) on2 e−bK) [ 1 (5.51)

Our last step is to compare the R.H.S. of (5.49) with (5.21) and (5.34). We
shall take the box W − to be the complement of Wc, b in Wa

W −=Wa 0Wc, b
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Then we split the sum over multi-indexes C ¥ qP(Wa) in three terms Sf(a),
Spr(a), and R(a). The first sum Sf(a) is over multi-indexes whose support
lies inside W −. Notice that for the multi-indexes C involved in this sum, one
has Y(C)=Yf (C) and thus

lim
a Q .

Sf(a)
ba2 =

a2 − c2

a2 Ff=(1 − c −) Ff

The second sum Spr(a) is over multi-indexes whose support lies inside Wc, b.
For the multi-indexes C involved in this sum, one has Y(C)=Ypr (C) and
thus

lim
a Q .

Sf(a)
ba2 =

c2

a2 Fpr=c −Fpr

Finally the reminder R(a) contains the multi-indexes whose support
intersects both W − and Wc, b. This term is thus bounded by a constant times
the length of the separation line between and P0. Therefore the limit
R(a)/a2 goes to zero as a Q . and we get

Dy − (1 − c −) K − c −J=(1 − c −) Ff+c −Fpr

giving the desired result.
The proof of (3.6) when −J < K < −J/r is obtained by the symmetry

Z+
Q Z−, Z−

Q Z+ when K Q −K and thus we take

2no max(e−b( J − |K|
2 ), e−b( r|K| − J

1+r
), 8e(e − 1) on2 e−b |K|) [ 1 (5.52)
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